3.394 \(\int \frac{1}{x^5 (1-3 x^4+x^8)} \, dx\)

Optimal. Leaf size=66 \[ -\frac{1}{4 x^4}-\frac{1}{40} \left (15+7 \sqrt{5}\right ) \log \left (-2 x^4-\sqrt{5}+3\right )-\frac{1}{40} \left (15-7 \sqrt{5}\right ) \log \left (-2 x^4+\sqrt{5}+3\right )+3 \log (x) \]

[Out]

-1/(4*x^4) + 3*Log[x] - ((15 + 7*Sqrt[5])*Log[3 - Sqrt[5] - 2*x^4])/40 - ((15 - 7*Sqrt[5])*Log[3 + Sqrt[5] - 2
*x^4])/40

________________________________________________________________________________________

Rubi [A]  time = 0.0626971, antiderivative size = 66, normalized size of antiderivative = 1., number of steps used = 7, number of rules used = 5, integrand size = 16, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.312, Rules used = {1357, 709, 800, 632, 31} \[ -\frac{1}{4 x^4}-\frac{1}{40} \left (15+7 \sqrt{5}\right ) \log \left (-2 x^4-\sqrt{5}+3\right )-\frac{1}{40} \left (15-7 \sqrt{5}\right ) \log \left (-2 x^4+\sqrt{5}+3\right )+3 \log (x) \]

Antiderivative was successfully verified.

[In]

Int[1/(x^5*(1 - 3*x^4 + x^8)),x]

[Out]

-1/(4*x^4) + 3*Log[x] - ((15 + 7*Sqrt[5])*Log[3 - Sqrt[5] - 2*x^4])/40 - ((15 - 7*Sqrt[5])*Log[3 + Sqrt[5] - 2
*x^4])/40

Rule 1357

Int[(x_)^(m_.)*((a_) + (c_.)*(x_)^(n2_.) + (b_.)*(x_)^(n_))^(p_.), x_Symbol] :> Dist[1/n, Subst[Int[x^(Simplif
y[(m + 1)/n] - 1)*(a + b*x + c*x^2)^p, x], x, x^n], x] /; FreeQ[{a, b, c, m, n, p}, x] && EqQ[n2, 2*n] && NeQ[
b^2 - 4*a*c, 0] && IntegerQ[Simplify[(m + 1)/n]]

Rule 709

Int[((d_.) + (e_.)*(x_))^(m_)/((a_.) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> Simp[(e*(d + e*x)^(m + 1))/((m
 + 1)*(c*d^2 - b*d*e + a*e^2)), x] + Dist[1/(c*d^2 - b*d*e + a*e^2), Int[((d + e*x)^(m + 1)*Simp[c*d - b*e - c
*e*x, x])/(a + b*x + c*x^2), x], x] /; FreeQ[{a, b, c, d, e, m}, x] && NeQ[b^2 - 4*a*c, 0] && NeQ[c*d^2 - b*d*
e + a*e^2, 0] && NeQ[2*c*d - b*e, 0] && LtQ[m, -1]

Rule 800

Int[(((d_.) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_)))/((a_.) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> Int[Exp
andIntegrand[((d + e*x)^m*(f + g*x))/(a + b*x + c*x^2), x], x] /; FreeQ[{a, b, c, d, e, f, g}, x] && NeQ[b^2 -
 4*a*c, 0] && NeQ[c*d^2 - b*d*e + a*e^2, 0] && IntegerQ[m]

Rule 632

Int[((d_.) + (e_.)*(x_))/((a_) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> With[{q = Rt[b^2 - 4*a*c, 2]}, Dist[
(c*d - e*(b/2 - q/2))/q, Int[1/(b/2 - q/2 + c*x), x], x] - Dist[(c*d - e*(b/2 + q/2))/q, Int[1/(b/2 + q/2 + c*
x), x], x]] /; FreeQ[{a, b, c, d, e}, x] && NeQ[2*c*d - b*e, 0] && NeQ[b^2 - 4*a*c, 0] && NiceSqrtQ[b^2 - 4*a*
c]

Rule 31

Int[((a_) + (b_.)*(x_))^(-1), x_Symbol] :> Simp[Log[RemoveContent[a + b*x, x]]/b, x] /; FreeQ[{a, b}, x]

Rubi steps

\begin{align*} \int \frac{1}{x^5 \left (1-3 x^4+x^8\right )} \, dx &=\frac{1}{4} \operatorname{Subst}\left (\int \frac{1}{x^2 \left (1-3 x+x^2\right )} \, dx,x,x^4\right )\\ &=-\frac{1}{4 x^4}+\frac{1}{4} \operatorname{Subst}\left (\int \frac{3-x}{x \left (1-3 x+x^2\right )} \, dx,x,x^4\right )\\ &=-\frac{1}{4 x^4}+\frac{1}{4} \operatorname{Subst}\left (\int \left (\frac{3}{x}+\frac{8-3 x}{1-3 x+x^2}\right ) \, dx,x,x^4\right )\\ &=-\frac{1}{4 x^4}+3 \log (x)+\frac{1}{4} \operatorname{Subst}\left (\int \frac{8-3 x}{1-3 x+x^2} \, dx,x,x^4\right )\\ &=-\frac{1}{4 x^4}+3 \log (x)+\frac{1}{40} \left (-15+7 \sqrt{5}\right ) \operatorname{Subst}\left (\int \frac{1}{-\frac{3}{2}-\frac{\sqrt{5}}{2}+x} \, dx,x,x^4\right )-\frac{1}{40} \left (15+7 \sqrt{5}\right ) \operatorname{Subst}\left (\int \frac{1}{-\frac{3}{2}+\frac{\sqrt{5}}{2}+x} \, dx,x,x^4\right )\\ &=-\frac{1}{4 x^4}+3 \log (x)-\frac{1}{40} \left (15+7 \sqrt{5}\right ) \log \left (3-\sqrt{5}-2 x^4\right )-\frac{1}{40} \left (15-7 \sqrt{5}\right ) \log \left (3+\sqrt{5}-2 x^4\right )\\ \end{align*}

Mathematica [A]  time = 0.034366, size = 61, normalized size = 0.92 \[ \frac{1}{40} \left (-\frac{10}{x^4}+\left (7 \sqrt{5}-15\right ) \log \left (-2 x^4+\sqrt{5}+3\right )-\left (15+7 \sqrt{5}\right ) \log \left (2 x^4+\sqrt{5}-3\right )+120 \log (x)\right ) \]

Antiderivative was successfully verified.

[In]

Integrate[1/(x^5*(1 - 3*x^4 + x^8)),x]

[Out]

(-10/x^4 + 120*Log[x] + (-15 + 7*Sqrt[5])*Log[3 + Sqrt[5] - 2*x^4] - (15 + 7*Sqrt[5])*Log[-3 + Sqrt[5] + 2*x^4
])/40

________________________________________________________________________________________

Maple [A]  time = 0.008, size = 71, normalized size = 1.1 \begin{align*} -{\frac{3\,\ln \left ({x}^{4}-{x}^{2}-1 \right ) }{8}}-{\frac{7\,\sqrt{5}}{20}{\it Artanh} \left ({\frac{ \left ( 2\,{x}^{2}-1 \right ) \sqrt{5}}{5}} \right ) }-{\frac{1}{4\,{x}^{4}}}+3\,\ln \left ( x \right ) -{\frac{3\,\ln \left ({x}^{4}+{x}^{2}-1 \right ) }{8}}+{\frac{7\,\sqrt{5}}{20}{\it Artanh} \left ({\frac{ \left ( 2\,{x}^{2}+1 \right ) \sqrt{5}}{5}} \right ) } \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/x^5/(x^8-3*x^4+1),x)

[Out]

-3/8*ln(x^4-x^2-1)-7/20*5^(1/2)*arctanh(1/5*(2*x^2-1)*5^(1/2))-1/4/x^4+3*ln(x)-3/8*ln(x^4+x^2-1)+7/20*5^(1/2)*
arctanh(1/5*(2*x^2+1)*5^(1/2))

________________________________________________________________________________________

Maxima [A]  time = 1.50719, size = 76, normalized size = 1.15 \begin{align*} \frac{7}{40} \, \sqrt{5} \log \left (\frac{2 \, x^{4} - \sqrt{5} - 3}{2 \, x^{4} + \sqrt{5} - 3}\right ) - \frac{1}{4 \, x^{4}} - \frac{3}{8} \, \log \left (x^{8} - 3 \, x^{4} + 1\right ) + \frac{3}{4} \, \log \left (x^{4}\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x^5/(x^8-3*x^4+1),x, algorithm="maxima")

[Out]

7/40*sqrt(5)*log((2*x^4 - sqrt(5) - 3)/(2*x^4 + sqrt(5) - 3)) - 1/4/x^4 - 3/8*log(x^8 - 3*x^4 + 1) + 3/4*log(x
^4)

________________________________________________________________________________________

Fricas [A]  time = 1.70473, size = 193, normalized size = 2.92 \begin{align*} \frac{7 \, \sqrt{5} x^{4} \log \left (\frac{2 \, x^{8} - 6 \, x^{4} - \sqrt{5}{\left (2 \, x^{4} - 3\right )} + 7}{x^{8} - 3 \, x^{4} + 1}\right ) - 15 \, x^{4} \log \left (x^{8} - 3 \, x^{4} + 1\right ) + 120 \, x^{4} \log \left (x\right ) - 10}{40 \, x^{4}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x^5/(x^8-3*x^4+1),x, algorithm="fricas")

[Out]

1/40*(7*sqrt(5)*x^4*log((2*x^8 - 6*x^4 - sqrt(5)*(2*x^4 - 3) + 7)/(x^8 - 3*x^4 + 1)) - 15*x^4*log(x^8 - 3*x^4
+ 1) + 120*x^4*log(x) - 10)/x^4

________________________________________________________________________________________

Sympy [A]  time = 0.195624, size = 66, normalized size = 1. \begin{align*} 3 \log{\left (x \right )} + \left (- \frac{3}{8} + \frac{7 \sqrt{5}}{40}\right ) \log{\left (x^{4} - \frac{3}{2} - \frac{\sqrt{5}}{2} \right )} + \left (- \frac{7 \sqrt{5}}{40} - \frac{3}{8}\right ) \log{\left (x^{4} - \frac{3}{2} + \frac{\sqrt{5}}{2} \right )} - \frac{1}{4 x^{4}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x**5/(x**8-3*x**4+1),x)

[Out]

3*log(x) + (-3/8 + 7*sqrt(5)/40)*log(x**4 - 3/2 - sqrt(5)/2) + (-7*sqrt(5)/40 - 3/8)*log(x**4 - 3/2 + sqrt(5)/
2) - 1/(4*x**4)

________________________________________________________________________________________

Giac [A]  time = 1.14576, size = 89, normalized size = 1.35 \begin{align*} \frac{7}{40} \, \sqrt{5} \log \left (\frac{{\left | 2 \, x^{4} - \sqrt{5} - 3 \right |}}{{\left | 2 \, x^{4} + \sqrt{5} - 3 \right |}}\right ) - \frac{3 \, x^{4} + 1}{4 \, x^{4}} + \frac{3}{4} \, \log \left (x^{4}\right ) - \frac{3}{8} \, \log \left ({\left | x^{8} - 3 \, x^{4} + 1 \right |}\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x^5/(x^8-3*x^4+1),x, algorithm="giac")

[Out]

7/40*sqrt(5)*log(abs(2*x^4 - sqrt(5) - 3)/abs(2*x^4 + sqrt(5) - 3)) - 1/4*(3*x^4 + 1)/x^4 + 3/4*log(x^4) - 3/8
*log(abs(x^8 - 3*x^4 + 1))